

Composite-Based Additive Manufacturing (CBAM) Technology

CBAM Technology Process Overview

STEP 1 PRINTING PROCESS

STEP 2 **HEAT AND PRESS**

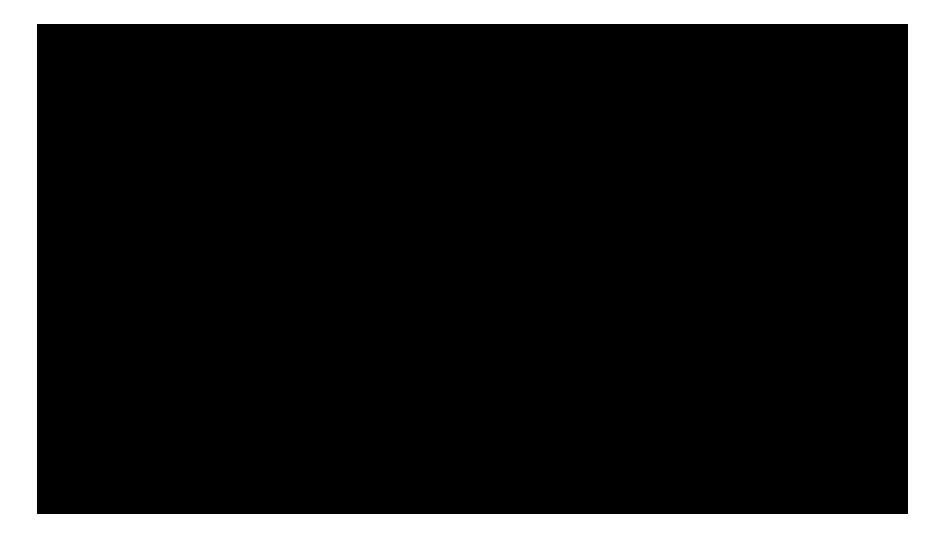
STEP 3 MATERIAL REMOVAL

A roll of long-fiber carbon or fiberglass substrate is loaded into the printer.

Using inkjet technology, the pattern of each layer of the final part is printed onto the fiber substrate.

Polymer powder is uniformly applied to the fiber substrate, the powder adheres only to the printed image.

Excess powder is removed, revealing the printed layer in the desired pattern, the process repeats for all the layers.



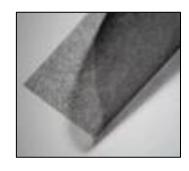
Sheets are stacked then heated to the melting point of the polymer material and compressed to consolidate the part to the designed height.

Automated media blasting removes unbound fibers to reveal final parts.

CBAM 25 process video

See video: www.impossible-objects.com

CBAM Materials


Room temperature deposition

CBAM nonwoven composite veils and materials are typically composed of:

- Engineered fibers (>12.5mm lengths)
- Random fiber orientations
- Bound together with an organic polymer binder

TYPES OF FIBER

- Carbon fiber
- Fiberglass
- Unidirectional Future

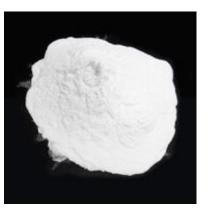
Powder Matrix

CBAM Polymer Matrix:

PEEK

(high heat and chemical resistance)

PA12


(Good abrasion resistance, toughness)

Upcycled PA12

(Low cost, sustainable)

Thermoset Epoxy

(Strong, stiff, dimensional stable and impact resistant)

In-situ process control for build repeatability

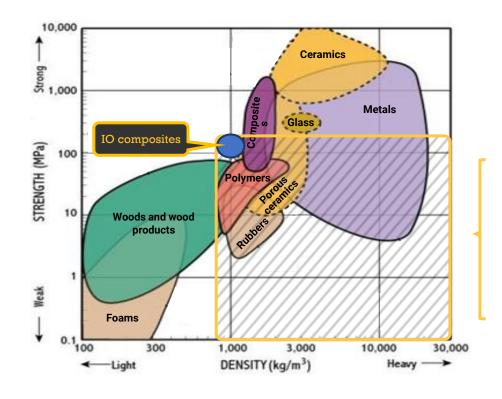
- CBAM 25 in-situ controls to ensure printed images match the intended design and verify the order, completeness, and integrity of pages in the output stack.
- Enhanced process control of printing and sheet powder loading
- Automatic purging and reprinting of defective sheets
- Minimal production scrap
- Fast build part build recovery in event of power outages

The vision system checks printed images to match the intended design

A high-resolution image capture for real-time sheet sequence verification of order, completeness, and integrity of stacks

Current CBAM Properties using non-woven composite

Similar Strength-to-Weight as 6061 Aluminum


Material Density

Aluminum

2.7 g/cm3

Carbon Fiber/PEEK

1.3 g/cm3

Carbon
fiber/PEEK
Materials in this
region can be
replaced by IO
composites

Ashby material chart

Technology Use Cases

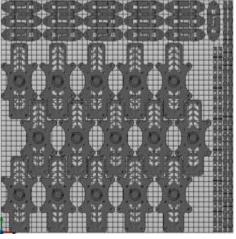
Industrial
Electronic Manufacturing tooling

AerospaceUnmanned Air vehicle components

AutomotiveEnd use part validation

AcademiaMaterial and Application Research

DefenseSpare parts


Success Case - Mass Production: one Drone per minute

12,000 units per month Cost is \$50 for part kits

Top view build layout

Bottom view build layout

- Scale that changes conflicts: With over 430,000 UASs per year from a single CBAM 25, millions of UASs are possible with just a few machines
- Additive means innovation: Innovation is free with AM and mass-produced UAVs can literally be upgraded within hours (vs. months or years)
- Innovation means impact: When end users can drive innovation in days, end products provide exactly what's needed where it's needed

Success Cases - Drone systems and parts

Success Cases – Industrial Tooling

Fabrication Tooling

- High strength properties
- Low thermal CTE expansion
- Future for welding fixtures
- Future for tube forming dies

Injection Molding

Hydroforming

Thermoforming

Autoclave Composite

Electronic Tooling

- High temperature >260°C resistance
- Extreme chemical resistance

Wave solder

Fixtures

- Excellent surface finish
- Close dimensional tolerances

Heat sink

Automated holding

Success Case – Electronic tooling

Impact

25 Carriers, 100 Top Pallets, and 90 Hold Downs

	CNC	CBAM	
Material	Fiberglass	Carbon Fiber PEEK	Better Heat Properties
Typical Cost	\$10,000	\$7,500	25% Cheaper
Turnaround Time	5+ Weeks	2 Weeks	50% Faster

Impossible Objects

Traditional

Jeff DeGrange Chief Commercial Officer

jdegrange@impossible-objects.com

Office 847.402.9582 ext. 4

Mobile 612.999.5252

www.impossible-objects.com

CBAM-25 Work Cell

CBAM-25

AUTOMATED HEATED PRESS

AUTOMATED REMOVAL STATION

TECHNOLOGY	Composite Based Additive Manufacturing (CBAM)	
MAX BUILD VOLUME	18 X 17.7 X 4 inches (457 x 449 x 101 mm)	
PRODUCTION SPEED	11,800cm³ per hour 16 Layers per minute	
POST PROCESSING	Heating, Pressing & Auto/ Manual Support Removal	
SUPPORT	No support material No restriction on build angles	
COMPOSITE MATERIALS	Carbon Fiber or Fiberglass with Nylon-12 or PEEK matrix	
LAYER THICKNESS	50-60 Micron	
POLYMER POWDER(S)	PEEK and Nylon 12	
PRINTER DIMENSIONS	24' x 7.5' x 5.5' Feet	
POWER REQUIREMENTS	208/3 Phase 50 Amp	
OPERATING TEMP	70° / 50% Relative humidity	
PRINT RESOLUTION (x,y)	1200 x 1200 dpi	
PRINT ACCURACY	0.005 Inches (125 Microns)	